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Abstract
It is pointed out that every generic—in a sense to be made precise in
section 2—solution to an arbitrary equation describing pseudo-spherical
surfaces (or, equivalently, an arbitrary equation which is the integrability
condition of a sl(2, R)-valued linear problem) determines pseudo-Riemannian
surfaces of constant scalar curvature, and therefore, classical solutions to the
Jackiw–Teitelboim field equations for two-dimensional gravity. In particular,
this observation explains why some standard soliton equations appear in this
theory.

PACS numbers: 02.40.Ky, 11.15.−q

1. Introduction

This letter is about the two-dimensional gravity model proposed in the early 1980s by
Teitelboim [36, 37] and Jackiw [14, 15], partially motivated by string theory [27]. The
Jackiw–Teitelboim (henceforth JT) model is one of the simplest 2D gravity theories [18]
but a very interesting one: it possesses Hamiltonian formulations (see [21, 36, 37] and also
[25, 26, 34, 38]) and its quantization has been studied from several points of view [8, 13,
25, 26, 34]; it can be cast as a gauge theory [8, 13, 34]; and it admits a black-hole
solution [20]—a dimensional reduction of the Bañados–Teitelboim–Zanelli 3D black hole
[2, 3]—which possesses interesting thermodynamical and quantum properties [4, 7, 19].

The classical solutions to the JT gravity model are pseudo-Riemannian surfaces of constant
scalar curvature [36, 37] and, since two surfaces of the same constant scalar curvature are
(locally) isometric, it is natural to consider them using special coordinate systems. For
example, it is very natural to study this theory in the Liouville gauge [15, 21], as in conformal
coordinates the fact that a surface has constant scalar curvature is equivalent to the conformal
factor satisfying the Liouville equation. More recently, Gegenberg and Kunstatter [11, 12]
have studied the JT gravity in the Euclidean sine-Gordon gauge and showed, in particular,
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that the black holes encountered in this theory can be understood in terms of sine-Gordon
solitons; Martina, Pashaev and Soliani [22–24] have investigated the gauge formulation of the
JT gravity and obtained a system of equations—and an associated bi-Hamiltonian hierarchy
of equations—whose solutions determine solutions to the field equations of the Jackiw–
Teitelboim theory and moreover, they have remarked that for special reductions of their
system the KdV and mKdV hierarchies naturally appear; finally, Bracken [6] has considered
a Chern–Simons-type action, re-derived the system of equations appearing in [22–24], and
connected it to the continuous Heisenberg model and the nonlinear Schrödinger equation.

The goal of this letter is to offer a simple geometric explanation of why integrable
equations appear in this context. It will be shown that every generic solution of equations
which describe pseudo-spherical surfaces—a class of equations introduced by Chern and
Tenenblat [9], preeminent members of which are the sine-Gordon, KdV, mKdV and Liouville
equations —provides models of pseudo-Riemannian surfaces of constant scalar curvature, and
therefore, classical solutions to the Jackiw–Teitelboim field equations.

2. Equations of pseudo-spherical type

Definition 1. An arbitrary scalar differential equation �(x, t, u, . . .) = 0 for a real-valued
function u(x, t) is said to describe pseudo-spherical surfaces or to be of pseudo-spherical type
if and only if there exist smooth functions fαβ, α = 1, 2, 3, β = 1, 2, depending on x, t, u, and
a finite number of derivatives of u such that the 1-forms

ωα = fα1 dx + fα2 dt

satisfy the structure equations of a surface of constant Gaussian curvature equal to −1 with
metric (ω1)2 + (ω2)2 and connection 1-form ω3, namely,

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3 and dω3 = ω1 ∧ ω2 (1)

whenever u(x, t) is a solution of the equation �(x, t, u, . . .) = 0.

The trivial case of all functions fαβ depending only on the independent variables x, t is
excluded from the considerations below. Equations of pseudo-spherical type were considered
for the first time by Chern and Tenenblat [9], motivated by Sasaki’s observation [33] that
equations which are the necessary and sufficient condition for the integrability of a linear
problem of AKNS type (Ablowitz, Kaup, Newell and Segur [1]) do describe pseudo-
spherical surfaces. Large classes of equations admitting this structure have been characterized
[9, 16, 29, 30], and geometrical methods for constructing solutions, (generalized) Bäcklund
transformations, and conservation laws for these equations have been developed by several
researchers [9, 17, 31–33, 35].

The expression ‘PSS equation’ will be sometimes utilized instead of ‘equation describing
pseudo-spherical surfaces’. The interpretation of definition 1 in terms of intrinsic differential
geometry of surfaces is based on the following genericity notions [32]:

Definition 2. Let � = 0 be a PSS equation with associated 1-forms ωα, α = 1, 2, 3. A
solution u(x, t) of � = 0 will be called I-generic if (ω3 ∧ ω2)(u(x, t)) �= 0; II-generic if
(ω1 ∧ ω3)(u(x, t)) �= 0; and III-generic if (ω1 ∧ ω2)(u(x, t)) �= 0.

Proposition 1. Let � = 0 be a PSS equation with associated 1-forms ωα, α = 1, 2, 3, and let
u(x, t) be a local solution to � = 0. Then,

(a) If u(x, t) is a I-generic solution, the 1-forms σ1 = ω2(u(x, t)) and σ2 = ω3(u(x, t))

determine a Lorentzian metric of constant Gaussian curvature K = −1 on the domain S
of u(x, t), with connection 1-form given by σ12 = ω1(u(x, t)).
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(b) If u(x, t) is a II-generic solution, the 1-forms σ1 = ω1(u(x, t)) and σ2 = −ω3(u(x, t))

determine a Lorentzian metric of constant Gaussian curvature K = −1 on the domain S
of u(x, t), with connection 1-form given by σ12 = ω2(u(x, t)).

(c) If u(x, t) is a III-generic solution, the 1-forms σ1 = ω1(u(x, t)) and σ2 = ω2(u(x, t))

determine a Riemannian metric of constant Gaussian curvature K = −1 on the domain
S of u(x, t), with connection 1-form given by σ12 = ω3(u(x, t)).

The invariance properties of equations (1) are what one would expect:

Proposition 2. Let � = 0 be a PSS equation with associated 1-forms ωα, α = 1, 2, 3, and let
ρ be any smooth function depending on x, t, u, and a finite number of derivatives of u. Then,
whenever u(x, t) is a solution to � = 0, equations (1) are invariant under the transformations

ω̂1 = ω1 cos ρ + ω2 sin ρ, ω̂2 = −ω1 sin ρ + ω2 cos ρ, ω̂3 = ω3 + dρ; (2)

ω̂1 = ω1 cosh ρ − ω3 sinh ρ, ω̂2 = ω2 + dρ, ω̂3 = −ω1 sinh ρ + ω3 cosh ρ; (3)

ω̂1 = ω1 + dρ, ω̂2 = ω2 cosh ρ + ω3 sinh ρ, ω̂3 = ω2 sinh ρ + ω3 cosh ρ. (4)

If u(x, t) is III-generic, the pull-back of (2) by u(x, t) is simply the transformation induced
on the 1-forms ωα(u(x, t)) by a rotation of the moving orthonormal frame dual to the coframe
{ω1(u(x, t)), ω2(u(x, t))}, if u(x, t) is II-generic the pull-back of (3) by u(x, t) corresponds
to a Lorentz boost of the moving frame dual to the coframe {ω1(u(x, t)),−ω3(u(x, t))}, and if
u(x, t) is I-generic the pull-back of (4) by u(x, t) corresponds to a Lorentz boost of the frame
dual to {ω2(u(x, t)), ω3(u(x, t))}.

Proposition 3. Let � = 0 be an equation of pseudo-spherical type with associated 1-forms
ωα, α = 1, 2, 3. The equation � = 0 is the integrability condition of the sl(2, R)-valued
linear problem dv = �v, in which � is the 1-form

� = 1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
, (5)

i.e. d� = � ∧ � whenever u(x, t) is a local solution of � = 0. Conversely, each sl(2, R)-
valued 1-form � satisfying the zero curvature condition d� − � ∧ � = 0 on solutions to
� = 0 can be used, as in (5), to construct 1-forms ωα, α = 1, 2, 3, satisfying the structure
equations (1) on solutions to � = 0.

In the terminology of Crampin, Pirani and Robinson [10] the 1-form �(u(x, t)) determines
a soliton connection. The choice (5) is motivated by the relation between the 1-forms
ωα associated with a PSS equation � = 0, and the Maurer–Cartan structure equations of
SL(2, R), see [32]. This close connection between equations of pseudo-spherical type and
linear problems was observed already by Sasaki [33].

3. Equations describing surfaces of constant curvature

Consider now a (pseudo)Riemannian manifold M of index iM and constant sectional curvature
K [5, 28, 35]. Assume that capital indices I, J take the values 1, 2, . . . , N , in which
N = dim(M). Let eI be an orthonormal moving frame on M, so that

〈eI , eJ 〉 = εI δIJ , (6)
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in which εI = 1 for all I except for iM indices for which εI = −1. Let ωI be the corresponding
dual 1-forms, and define connection 1-forms ωIJ as

deI =
N∑

J=1

εJ ωIJ eJ . (7)

These forms satisfy the metric compatibility constraint ωIJ +ωJI = 0. The structure equations
of M are [5, 35]

dωI =
N∑

J=1

εIω
J ∧ ωJI , dωIJ =

N∑
L=1

εLωIL ∧ ωLJ + �IJ , (8)

in which �IJ = −KεI εJ ωI ∧ ωJ (no summation). Taking N = 2, one obtains

dω1 = ε1ω12 ∧ ω2, dω2 = ε2ω
1 ∧ ω12 and dω12 = −Kε1ε2ω

1 ∧ ω2, (9)

which of course reduce to equations (1) for ε1 = ε2 = 1 and ω3 = ω12. Now restrict to the
Lorentzian case. The structure equations for a two-dimensional pseudo-Riemannian manifold
M with metric ds2 = (ω1)2 − (ω2)2 of signature (1,−1) and connection 1-form ω12, are

dω1 = ω12 ∧ ω2, dω2 = −ω1 ∧ ω12 and dω12 = Kω1 ∧ ω2, (10)

in which K is the Gaussian curvature of M. Recalling that the scalar curvature R satisfies
R = 2K [28], one arrives to the following definition:

Definition 3. A differential equation �(x, t, u, . . .) = 0 describes Lorentzian surfaces of
constant scalar curvature 
 if and only if there exist functions fαβ , α = 1, 2, 3, β = 1, 2,
depending on x, t, u, and a finite number of derivatives of u, such that the 1-forms

ω1 = f11 dx + f12 dt, ω2 = f21 dx + f22 dt, ω12 = f31 dx + f32 dt, (11)

satisfy the structure equations (10) with K = 
/2 whenever u(x, t) is a solution to � = 0.

Definition 3 is a natural analogue of the definition of a PSS equation, of course. In fact,
these two classes of equations coincide:

Proposition 4. The 1-forms ω1, ω2, ω12 satisfy the structure equations (10) with K = 
/2 if
and only if the sl(2, R)-valued 1-form

� = 1

2

(
ω12 2c(ω2 + ω1)

−2e(ω2 − ω1) −ω12

)
(12)

in which c and e are numbers, such that ce = −
/8, satisfies d� − � ∧ � = 0.

Proposition 5. Let σα be three 1-forms satisfying the structure equations of a pseudo-spherical
surface

dσ1 = σ3 ∧ σ2, dσ2 = σ1 ∧ σ3, dσ3 = σ1 ∧ σ2. (13)

Then, the 1-forms

ω1 = − 2



[(e + c)σ1 − (e − c)σ3] (14)

ω2 = − 2



[(e − c)σ1 − (e + c)σ3] (15)

ω12 = σ2, (16)
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in which ce = −
/8, satisfy the structure equations (10). Conversely, if ω1, ω2 and ω12

satisfy (10), then the 1-forms

σ1 = (c − e)ω2 + (c + e)ω1, (17)

σ2 = ω12, (18)

σ3 = −(e + c)ω2 + (e − c)ω1, (19)

in which ec = −
/8, satisfy the structure equations (13).

The proof of proposition 4 is a simple computation. One then obtains proposition 5 by
comparing the matrix-valued 1-form (12) with the matrix-valued 1-form appearing in section 2.
Thus, every solution of an equation describing pseudo-spherical surfaces (in particular,
any equation solvable by AKNS-inverse scattering techniques [1, 33]) describes Lorentzian
surfaces of constant scalar curvature.

Corollary 1. Let � = 0 be a PSS equation with associated 1-forms σα, α = 1, 2, 3. Then,
any II-generic solution to � = 0 determines a Lorentzian metric of constant scalar curvature,
and therefore a classical solution for the Jackiw–Teitelboim equation of motion

R = 
.

The proof of this corollary is straightforward: since � = 0 is a PSS equation with
associated one-forms σα , the structure equations (13) are satisfied on solutions. Thus one
can define 1-forms as in (14)–(16), and conclude that � = 0 describes Lorentzian surfaces
of constant scalar curvature 
. In order to show that (14) and (15) determine a moving
coframe (and therefore a nondegenerate Lorentzian metric of constant scalar curvature) one
needs to check the independence condition ω1 ∧ ω2 �= 0. A short computation shows that
ω1 ∧ ω2 = (8/
2)[e2 + c2]σ1 ∧ σ3, which is not zero if one considers II-generic solutions to
� = 0.

The dilaton field which appears in the gauge description of the theory [8, 13] can also be
interpreted in the context of PSS equations: one can see, following Chamseddine and Wyler
[8], that it corresponds to a Lie algebra-valued scalar which is covariantly constant with respect
to the connection 1-form (5). This observation has been made already (in the special case of
the Euclidean sine-Gordon equation) by Gegenberg and Kunstatter [11, 12].
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